Inhibition of phagosome-lysosome fusion in macrophages by certain mycobacteria can be explained by inhibition of lysosomal movements observed after phagocytosis
نویسندگان
چکیده
We have investigated the mechanism of the inhibition of phagosome-lysosome (P-L) fusion in macrophages known to occur after infection by Mycobacterium tuberculosis and by the mouse pathogen Mycobacterium microti. We have used an M. microti infection and have studied, first, the saltatory movements of periphagosomal secondary lysosomes by means of visual phase-contrast microscopy (a similar use of the method having been previously supported by computer analyses). The movements became slow or static after ingestion of live but not of heat-killed M. microti. They were unaffected by a fusiogenic mycobacterium M. lepraemurium. Second, we studied the behavior of a normally fusiogenic unrelated organism, Saccharomyces cerevisiae, after its phagocytosis by cells already containing live M. microti ingested 18 h previously. We observed, using a fluorescent assay of fusion, that many of these yeast phagosomes now also failed to fuse with the lysosomes; in contrast, when the host M. microti had been heat killed the yeast phagosomes fused normally. These observations were extended by ultrastructural quantitative analyses of P-L fusion, which confirmed the nonfusion of phagosomes of live M. microti and, more particularly, the change to nonfusion from the normal fusion behavior of the separate phagosomes of accompanying yeasts. Third, we have assembled evidence against the likelihood that these M. microti-induced phenomena are nonspecific, i.e., secondary to a general depression of activity of heavily infected host cells. The evidence includes the feasibility of adjusting the degree of infection so as to facilitate visual assessment of organelle movements without the presence of detectable damage to the cells studied; the absence of lysosomal stasis after comparable infection with another mycobacterium of comparable virulence (M. lepraemurium); and the reversibility of the stasis. We conclude that inhibition of lysosome saltatory movements (and consequently its secondary effect on the associated yeasts) is a significant, specifically induced phenomenon. From these observations and considerations, therefore, in conjunction with the analogous inhibition of lysosomal movements in normal macrophages by some chemical inhibitors of P-L fusion, and our suggestion that this association is causally related, we now suggest that M. microti-induced focal lysosomal stasis is also the main means by which the inhibition of P-L fusion is brought about by this organism. This concept is strengthened by the observations on S. cerevisiae, which provide strong evidence that stasis can cause suppression of fusion.
منابع مشابه
Membrane vesicles shed by Legionella pneumophila inhibit fusion of phagosomes with lysosomes.
When cultured in broth to the transmissive phase, Legionella pneumophila infects macrophages by inhibiting phagosome maturation, whereas replicative-phase cells are transported to the lysosomes. Here we report that the ability of L. pneumophila to inhibit phagosome-lysosome fusion correlated with developmentally regulated modifications of the pathogen's surface, as judged by its lipopolysacchar...
متن کاملMannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids.
The ability of pathogenic mycobacteria to block phagosome-lysosome fusion is critical for its pathogenesis. The molecules expressed by mycobacteria that inhibit phagosome maturation and the mechanism of this inhibition have been extensively studied. Recent work has indicated that mannosylated lipoarabinomannan (ManLAM) isolated from Mycobacterium tuberculosis can function to delay phagosome-lys...
متن کاملChemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements. A combined microscopic and computer study
The effects on lysosomal movements produced by the weak base ammonium chloride and by a representative polyanion poly-D-glutamic acid (PGA), previously reported to inhibit phagosome-lysosome (P-L) fusion, have been studied in cultured mouse macrophages using direct visual phase-contrast microscopy, a previously described (1, 3, 7) fluorescence assay of fusion, and computer analysis techniques. ...
متن کاملPathogenic mycobacteria achieve cellular persistence by inhibiting the Niemann-Pick Type C disease cellular pathway
BACKGROUND Tuberculosis remains a major global health concern. The ability to prevent phagosome-lysosome fusion is a key mechanism by which intracellular mycobacteria, including Mycobacterium tuberculosis, achieve long-term persistence within host cells. The mechanisms underpinning this key intracellular pro-survival strategy remain incompletely understood. Host macrophages infected with persis...
متن کاملSurvival of Mycobacteria in Macrophages Is Mediated by Coronin 1-Dependent Activation of Calcineurin
Pathogenic mycobacteria survive within macrophages by avoiding lysosomal delivery, instead residing in mycobacterial phagosomes. Upon infection, the leukocyte-specific protein coronin 1 is actively recruited to mycobacterial phagosomes, where it blocks lysosomal delivery by an unknown mechanism. Analysis of macrophages from coronin 1-deficient mice showed that coronin 1 is dispensable for F-act...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Experimental Medicine
دوره 166 شماره
صفحات -
تاریخ انتشار 1987